Search Results

Chemistry 3: Organic Reactions and Mechanisms (with Lab) — CHE4213.01

Instructor: Fortune Ononiwu
Days & Time: T/F 10:30AM-12:20PM, W 8:30AM-12:10PM (Lab)
Credits: 5

Chemistry 3 focuses on the nature and pathways of organic reactions: what the steps are, how we experimentally determine them, and how we can use them to solve practical problems, such as the synthesis of a drug, or understanding the action of an enzyme. Emphasis will be using the general principles of nucleo- and and electrophilicity to provide a logical framework for understanding substitution, addition, elimination and reactions involving carbonyl groups. Chemical kinetics will also be a topic of study because of the insights it provides for reaction mechanisms.

Chemistry 1: Chemical Principles (with Lab) — CHE2211.01

Instructor: Fortune Ononiwu
Days & Time: T/F 2:10PM-4:00PM, Th 8:30AM-12:10PM (Lab)
Credits: 5

This course is the first of a four-course chemistry sequence covering general, organic and biochemistry. Students do not need to take the entire sequence. We will focus on introductory chemical principles, including atomic theory, classical and quantum bonding concepts, molecular structure, organic functional groups, and the relationship between structure and properties. The class will have lecture/discussion meetings at which we will critically examine the major concepts of reading assignments, discuss articles, and review some of the current developments of the field.

Early Christian and Sufi Mystics — LIT2579.01

Instructor: An Duplan
Days & Time: TU,FR 2:10pm-4:00pm
Credits: 4

Mystics鈥撯揾istorically portrayed as passionate, dangerous, romantic, heretical, satanic鈥撯揳re a thorn in the side of organized religion. From the very beginnings of recorded human time, the presence and practice of mystics has been controversial. Sufi mystic al-Hallaj鈥檚 pronouncement that he was 鈥渢he Truth鈥 was received as blasphemy by the orthodoxy. His execution followed shortly after. Christian mystics of the 4th and 5th centuries were relegated to practicing outside the peripheries of the Roman Empire, in relative secrecy.

Visualizing Science — CHE2249.01

Instructor: Dor Ben-Amotz
Days & Time: WE 2:10pm-4:00pm
Credits: 2

In this class we will explore the art and practice of scientific communication. This course is inspired by the work of Edward Tufte as well as a lifetime of experience in scientific research and presentation. Our aim is to learn how to create elegant explanations of complex ideas using pictures, charts, numbers and words. We will analyze and produce displays for use in journalism, research publications and scientific presentations, as well as other art forms that inspire multifaceted understanding.

Genome Jumpstart — BIO2117.01

Instructor: Amie McClellan
Days & Time: TU,FR 10:30am-12:20pm
Credits: 4

This course offers an immersive experience into the world of DNA, genes, and genomes in eukaryotic organisms.  In addition to getting a grasp of the foundational biology, students will engage with various online databases and resources, becoming familiar with the computational algorithms and methodologies used to mine and analyze the ever-increasing data generated from whole-genome sequencing, and consider how that improves our understanding of evolutionary relationships amongst organisms based on their molecular fingerprints.  In the second half of the term, students

Protein Research Methods — BIO4109.01

Instructor: Amie McClellan
Days & Time: WE 2:10pm-5:50pm
Credits: 4

Research questions in cell biology and biochemistry often require the ability to study the proteins at the heart of the inquiry.  This course will give students hands-on experience quantifying proteins, detecting protein expression, measuring enzymatic activity, assessing protein-protein interactions, purifying proteins, and visualizing fluorescently-labeled proteins in vivo.

Neuroscience — BIO4437.01

Instructor: Blake Jones
Days & Time: MO,TH 1:40pm-3:30pm
Credits: 4

This rigorous course provides a comprehensive introduction of the nervous system, including its structure, function, and development. Students will explore the principles of the cellular and molecular mechanisms that allow neurons and other specialized nervous cells to detect, encode, and transmit information; including signaling, synaptic transmission, and neuroplasticity.

Scanning Electron Microscopy Research Methods — ES4107.01

Instructor: Tim Schroeder
Days & Time: TU 2:10pm-4:00pm
Credits: 2

Scanning electron microscopes are a fundamental tool in the physical and life sciences. When equipped with an X-Ray spectrometer, a SEM can provide rapid physical and chemical data of specimens on extremely small scales. This class with cover the theory and practical applications of SEM imaging and analysis for advanced science students who have their own research interests. Students will be expected to develop and conduct an independent research project through this class.

How to Build a Forest — BIO2131.01

Instructor: Caitlin McDonough MacKenzie
Days & Time: TU,FR 2:10pm-4:00pm
Credits: 4

Bennington鈥檚 campus supports beautiful examples of temperate deciduous mixed hardwood forests. This class is a deep dive into forest ecology, land use change, and forest succession at a local scale. Students will explore the local forest community composition, structure, and function over the last 15,000 years and discuss the environmental conditions, disturbance dynamics, and biotic interactions responsible for the forest we have today.

Evolution — BIO4440.01

Instructor: Blake Jones
Days & Time: TU,FR 10:30am-12:20pm
Credits: 4

Evolution is the unifying theory of biology, explaining the diversity of life on Earth and the mechanisms that drive adaptation and speciation. This course will explore the core principles of evolutionary biology, including natural selection, genetic drift, gene flow, mutation, and the interplay between evolutionary processes and ecological contexts. We will examine key evolutionary events, from the origins of life to the development of complex traits, using case studies across diverse taxa.